SNR-SFP+Cxx-10

Одномодовый трансивер CWDM SFP+ для 10 GBE

Дуплексный трансивер SFP+

Соответствует требованиям RoHS6

Особенности

- ◆ Поддерживает скорость передачи данных 11,3 Гбит/с
- ◆ Возможность замены в «горячем» режиме
- ◆ Передатчик CWDM DFB с 18 длинами волн с 1270нм до 1610 нм, с Шагом 20 нм
- Оптический бюджет не менее 10 дБ
- ◆ Дуплексный разъем LC-интерфейса
- ♦ Рассеяние мощности < 1,2 Вт
- ◆ Рабочая температура
 Стандартное исполнение: -5 ~+70°C
 Индустриальное исполнение: -20 ~+75°C
- ◆ Соответствует требованиям Спецификации SFP+ MSA SFF-8431
- Встроенные функции цифровой диагностики
- ◆ Соответствует требованиям Спецификации SFF-8472
 MSA

Применение

- ♦ 10GBASE-LR/LW на 10 Γ Ethernet
- ◆ 10GBASE-LR на 10,31 Гбит/с
- ◆ 10GBASE-LW на 9,95 Гбит/с
- ◆ Скорости передачи OBSAI 6,144 Гбит/с, 3,072 Гбит/с, 1,536 Гбит/с, 0,768 Гбит/с
- ◆ Скорости передачи CPRI 10,138 Гбит/с, 9,830 Гбит/с, 7,373 Гбит/с, 6,144 Гбит/с, 4,915 Гбит/с, 2,458 Гбит/с, 1,229 Гбит/с, 0,614 Гбит/с
- Другие оптические линии связи

Информация для заказа

Артикул	Скорость передачи данных	Лазер	Тип волокна	Оптический бюджет	Темп.	Опт. интерфейс
SNR-SFP+Cxx-10X*прим.1	До 11,3 Гбит/с	CWDM DFB	SMF	>10 дБ	от -5 до +70°C	LC
SNR-SFP+Cxx-10X-I* прим.1	До 11,3 Гбит/с	CWDM DFB	SMF	>10 дБ	от -20 до +75°C	LC

Примечание 1: Х относится к диапазону длин волн от 1270 нм до 1610 нм, Х=А~R, обозначает 1270 нм до 1610 нм.

^{*}Изображение продукта приведено исключительно в справочных целях

Длины волн CWDM*

	Harramanan	Длина волны (нм)			
Диапазон	Номенклатура	Мин.	Тип.	Макс.	
	Α	1264	1270	1277,5	
	В	1284	1290	1297,5	
О-Диапазон Исходный	С	1304	1310	1317,5	
	D	1324	1330	1337,5	
	E	1344	1350	1357,5	
	F	1364	1370	1377,5	
	G	1384	1390	1397,5	
Е-Диапазон Расширенный	Н	1404	1410	1417,5	
	I	1424	1430	1437,5	
	J	1444	1450	1457,5	
	K	1464	1470	1477,5	
S Пианазац Караткаранцарый	L	1484	1490	1497,5	
S-Диапазон Коротковолновый	M	1504	1510	1517,5	
	N	1524	1530	1537,5	
С-Диапазон Традиционный	0	1544	1550	1557,5	
L-Диапазон Длинноволновый	Р	1564	1570	1577,5	
	Q	1584	1590	1597,5	
	R	1604	1610	1617,5	

CWDM*: 18 Длины Волн с 1270 нм по1610 нм, каждый шаг 20 нм.

Соответствие нормативным актам

Сертификат продукта	Номер сертификата	Применимый стандарт		
		EN 60950-1:2006+A11+A1+A12+A2		
TUV	R50135086	EN 60825-1:2014		
		EN 60825-2:2004+A1+A2		
UL	E317337	UL 60950-1		
OL.	E317337	CSA C22.2 No. 60950-1-07		
EMC CE	AE 50285865 0001	EN 55022:2010		
EIVIC CE	AE 30263603 000 I	EN 55024:2010		
`FCC	WTF14F0514417E	47 CFR PART 15 OCT., 2013		
FDA	1	CDRH 1040.10		
ROHS	1	2011/65/EU		

Описание

Оптические трансиверы серии SNR-SFP+Cxx-10 предназначены для использования в оптических сетях связи, таких как 10G Ethernet (10GBASE-LR/LW) и полностью соответствуют требованиям спецификации SFP+ MSA SFF-8431.

Модуль предназначен для одномодового волокна и использует номинальную длину волны CWDM. Доступно 18 центральных длин волн – с 1270 нм по 1610 нм, каждый шаг в 20 нм. Минимальный гарантированный бюджет составляет 10 дБ.

Модуль оснащен разъемом SFP+, что обеспечивает возможность замены в «горячем» режиме. Необходим один источник питания 3,3 В. Оптический выход может быть блокирован входом сигналов высокого уровня TX_DIS логического интерфейса LVTTL. Для индикации потери входящего оптического сигнала на приемнике модуль снабжен выходом Потеря сигналов (RX LOS).

Функции цифрового мониторинга на данном модуле доступны через 2-проводной последовательный интерфейс в соответствии с требованиями спецификации SFF-8472.

Абсолютные максимальные значения

Параметр	Обозначение	Мин	Тип.	Макс.	Ед. измерения
Максимальное напряжение источника питания	Vcc	-0,5		4,0	В
Температура хранения	Ts	-40		85	°C

Рекомендуемые условия эксплуатации

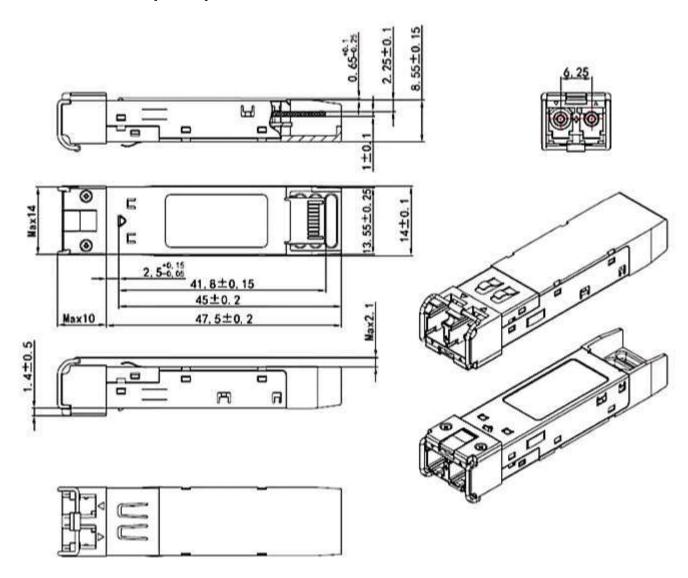
Параметр	Обозначение		Мин.	Тип.	Макс.	Ед. измерения
Рабочая температура		Стандарт.	-5		+70	°C
	T _C	Расширен.	-20		+75	°C
Напряжение питания	Vcc		3,13	3,3	3,45	В
Потребляемый ток от источника питания	Icc				350	мА
Скорость передачи			0,614		11,3	Гбит/с

Электрические характеристики

Параметр	Обозначение	Мин.	Тип.	Макс.	Ед. Изм.	Прим.		
Передатчик								
Амплитуда входного сигнала (дифференциал)	Vin	150		1200	mVpp	1		
Входной импеданс (дифференциал)	Zin	85	100	115	ОМ			
Tx_DISABLE Входное напряжение - Высокое		2		Vcc+0,3	В			
Tx_DISABLE Входное напряжение - Низкое		0		0,8	В			
Tx_FAULT Выходное напряжение - Высокое		2		Vcc+0,3	В			
Tx_FAULT Выходное напряжение - Низкое		0		0,5	В			
		Прием	ник					
Амплитуда выходного сигнала (дифференциал)	Vout	350		700	mVpp	1		
Выходной импеданс (дифференциал)	Zout	85	100	115	ohms			
Rx_LOS Напряжение на выходе - Высокое		2		Vcc+0.3	В			
Rx_LOS Напряжение на выходе - Низкое		0		0,8	В			
MOD DEE (2:0)		2,5			В			
MOD_DEF (2:0)		0		0,5	В			

^{1.} После внутреннего связывания контуров переменного тока. 2. См. SFF-8472 MSA

Оптические характеристики


Параметр	Обозначение	Мин	Тип.	Макс	Ед. Изм.	Прим.			
Передатчик									
Оптическая выходная мощность: одномодовое волокно 9/125	Pout	-5		0	дБмВт	1			
Коэффициент оптического затухания	ER	3,5			дБ				
Длина оптической волны	λ	λс-6	λс	λc+7,5	НМ	2			
Ширина спектра (-20 дБ)	Δλ			1	НМ				
Коэффициент подавления побочных мод	SMSR	30			дБ				
Дисперсионные потери передатчика	TDP			2	дБ				
Средняя выходная мощность передатчика OFF	Poff			-30	дБмВт				
ТХ Генерация джиттера (полная амплитуда)	TXj			0,1	UI				
ТХ Генерация джиттера (RMS)	TXj RMS			0,01	UI				
		Приемн	ИК						
Чувствительность приемника на 10,7 Гбит/с	Pmin			-14,4	дБмВт	3			
Максимальная входная мощность	Pmax	+0,5			дБмВт				
Центральная длина оптической волны	λ	1260		1620	НМ				
Коэффициент отражения приемника	Rrf			-27	дБ				
LOS De-Assert (отмена подтверждения потери сигнала) при 28,05 Гбит/с	LOS _D			-16	дБмВт				
LOS Assert (Потверждение потери сигнала) при 28,05 Гбит/с	LOS _A	-28			дБмВт				
LOS Гистерезис		1			дБ				

^{1:} Выходная мощность выведена в одномодовое волокно 9/125 мкм

^{2:} Длина волны CWDM ITU-T G.694.2 – с 1270 нм по1610 нм, каждый шаг по 20 нм.

^{3.} Минимальная средняя оптическая мощность, BER меньше, чем 1E-12 и шаблон измерения – PRBS 2^{31} -1.

Механические характеристики

Гарантия:

Контактные данные:

Адрес: Россия, Екатеринбург, Предельная 57/2

Тел: +7(343) 379-98-38

Факс: +7(343) 379-98-38

E-mail: info@nag.ru